If it's not what You are looking for type in the equation solver your own equation and let us solve it.
64x^2-3=13
We move all terms to the left:
64x^2-3-(13)=0
We add all the numbers together, and all the variables
64x^2-16=0
a = 64; b = 0; c = -16;
Δ = b2-4ac
Δ = 02-4·64·(-16)
Δ = 4096
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4096}=64$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-64}{2*64}=\frac{-64}{128} =-1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+64}{2*64}=\frac{64}{128} =1/2 $
| x4(x−6)=−24 | | 22x+11=4x–7 | | -81=9b | | 25+24x=50+20x | | 34x+91=3(14x+9) | | x^2+4+6x+14=10 | | (6p+1)(–6p+1)=0 | | -2(-10-3x)=56 | | 45=9h-9 | | k=6-7 | | -6/5u=10 | | 75=4x+2+11x-7 | | 13+15·3=x | | x÷3=8.5 | | 3(1x-9)=-51 | | 7b-10=180 | | (5x+33)=(x+65) | | n(n-3)=43 | | -3(-6-7x)=-129 | | 6r-7+90+55=180 | | 5y-3y+8=8-5y-14 | | 5=2/5x+1 | | .2(2x-10)+4x=-3(.2x=) | | 23x-6=24 | | (t)=-16t2+16t+480 | | 7x+3+3x+2=180 | | 6(2x-3)=114 | | 75=11×-7+4x+2 | | 8x+(7x+5)+10x=180 | | 17+5(x-1)=37 | | 2(3)(4x)-2(3)5x)-(6)=0 | | x^2+2x-152=0 |